Assessing and Reducing FGD-PET/CT Radiotracer Infiltrations: Lessons in Quality Improvement Sustainability

Jackson W. Kiser 1 , James Crowley 1 , Thad Benefield 2 , Ronald Lattanzio 3 , Steve Perrin 3 , Josh Knowland 3 , Kelley Ryan 3
1Carilion Clinic, Roanoke, VA
2University of North Carolina, Chapel Hill, NC
3Lucerno Dynamics, LLC, Cary NC

BACKGROUND

Accurate administration of the radiotracer dose is essential to PET image quality and quantification. Oncologic PET/CT studies require a prescribed 18F-fluorodeoxyglucose (FDG) dose delivered as a bolus prior to imaging; this same dose is used in the Standardized Uptake Value (SUV) calculation. A misadministration (infiltration) of the dose can impact PET/CT results and lead to unnecessary or inappropriate treatments and procedures. An infiltration leaves FDG outside the circulation and will result in underestimating the SUV. Interpreting physicians are often unaware of infiltrations when the injection site is outside the imaging field of view (FOV). Despite existing quality control (QC) efforts to ensure accuracy of the administered dose, there is no routine QC method that confirms complete delivery of the dose into the patient’s circulation.

Five technologists from our center participated in a quality improvement (QI) project using Design, Measure, Analyze, Improve, Control (DMAIC) methodology and new technology to assess and improve radiotracer infiltration rates. 263 injections were monitored in the Measure phase with a 13.3% infiltration rate. The new technology provided our team factors as associated with increased probability of infiltration (28.6%) compared to antecubital fossa injections (8.5%). After implementing a quality improvement plan developed during the Analyze phase, which included the addition of an autoinjector, reassigning the injection room set-up and refresh training, another 278 injections were monitored in the Improve phase with a resulting 2.9% infiltration rate. The 78% decrease in overall infiltration rate was significant (p=0.0026). Infiltration rates in antecubital fossa injections also significantly decreased to 1.3% (p=0.0039).

OBJECTIVE

Our objective was to evaluate the Control phase to assess sustainability of improvements made during the Improve phase.

METHODS

After the Improve phase, seven new technologists joined the team. Infiltration rates in the Control phase were calculated, controlling for technologist- and patient-level correlations (SAS v. 9.4). Comparisons were made between the technologists who participated in the Measure and Improve phases and those who did not. We learned during the Control phase that the technologist with higher predicted probability of infiltrations during injections administered by new technologists. Needles larger than 22 gauge and not using an autoinjector were the factors associated with higher predicted probability of infiltrations during injections administered by new technologists.

RESULTS

Monitoring of injection quality continued in the Control phase for approximately one year (10/7/2017 - 9/26/2018). During the Control phase, twelve technologists administered 1,240 injections with an overall infiltration rate of 3.1%. Five of the technologists were part of the Measure and Improve phases, and seven were new to the team. The adjusted infiltration rate for the seven new technologists was higher (6.08%) compared to the Measure and Improve technologists (2.05%) and the difference in rates was significant (p=0.017).

LESSONS LEARNED

An autoinjector was critical in reducing infiltration rates, however, infiltration rates naturally increased over time. Ongoing monitoring allows us to repeat DMAIC cycles to understand if factors associated with radiotracer infiltrations allow us to sustain improvements while gaining insight into injection quality on both new and existing technologists. Ongoing monitoring allows us to repeat DMAIC cycles to understand if factors associated with our infiltrations change over time. Previously our facility imaged patients ‘arms down’ to visualize infiltrations on routine images. We are now able to confidently image patients in the ‘arms up’ position due to the additional insight we now have into the quality of the injection and technologist practice patterns. Because proper injections are critical to PET/CT images, we intend to continue monitoring injection quality so that we continue to deliver high quality care to all of our patients.

CONCLUSION

New monitoring technology to drive radiotracer injection quality improvement was easily incorporated into our routine clinical practice. Understanding our unique factors associated with radiotracer infiltrations allowed us to sustain improvements while gaining insight into injection quality on both new and existing technologists. Ongoing monitoring allows us to repeat DMAIC cycles to understand if factors associated with our infiltrations change over time.